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a b s t r a c t

The detection limit (LD) and the quantification limit (LQ) are important parameters in the validation
process. Estimation of these parameters is especially important when trace and ultra-trace quantities of
analyte are to be detected. When the apparatus response from the analyte is below the detection limit,
it does not necessarily mean that the analyte is not present in the sample. It may be a message that the
analyte concentration could be below the detection capabilities of the instrument or analytical method.
By using a more sensitive detector or a different analytical method it is possible to quantitatively
determine the analyte in a given sample. The terms associated with detection capabilities have been
present in the scientific literature for at least the past 100 years. Numerous terms, definitions and
approaches to calculations have been presented during that time period. This paper is an attempt to
collect and summarize the principal approaches to the definition and calculation of detection and
quantification abilities published from the beginning of 20th century up until the present. Some of the
most important methods are described in detail. Furthermore, the authors would like to popularize
the knowledge of metrology in chemistry, particularly that part of it which concerns validation of the
analytical procedure.

& 2014 Elsevier B.V. All rights reserved.
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1. Introduction

It is certainly true that assignation of a critical level (LC),
detection limit (LD) and a quantification limit (LQ) is necessary to
produce reliable results when analyzing samples at low concen-
tration ranges (dependent on the capability of the equipment used
to determine the analyte), not only when trace and ultratrace
quantities of the analyte are measured. There are many different
applications where assignation of detection and quantification
capabilities is crucial, including health protection and doping
control, radiochemistry, trace analysis of toxic elements in the
environment, food and materials and verifying the purity of
materials and products. However, determination of these para-
meters has proved to be troublesome over the years because both
the number of determination methods adopted and the incon-
sistent terms related to them have caused confusion.

The aim of the presented paper is to trace the history of
changes in the definition and determination of detection and
quantification capabilities and to present the approaches to
estimating LD in modern analytical chemistry. A series of reviews
on the estimation of methods of detection abilities have been
published [1–6]. However, no comprehensive history of changes in
approach to the estimation of detection abilities has yet been
published. Currie (in 1968) [7] and Lavagnini and Magno (in 2007)
[1] reported on a variety of terms used in the literature. In the
present paper, the authors have also presented a list of terms that
have been used in reference to LC, LD and LQ in the literature
discussed herein (Table 1). The purpose was to illustrate the
multiplicity of terms which have basically the same meaning.
Unlike Currie, Lavagnini and Magno, the authors have covered over
a century of the history of terms used in connection with detection
and quantification capabilities: from the early 20th century to the

Table 1
Different terms associated with detection and quantification capabilities used in the literature.

Authors Term used Refers to

Altshuer and Pasternack [14] The minimum significant measured activity Critical level
Currie [7] The critical level
IUPAC [24]
Boqué and Heyden [2]
Rajaković et al. [3]
IUPAC [24] Critical value
Hubaux and Vos [16] Decision limit
Linnet and Kondratovich [38] Limit of blank
Loock and Wentzell [41] Critical concentration limit
Lavagnini et al. [40] Critical limit

Curthman and Rothberg [10] The limit of the test Detection limit
Feigl [11] Erfassungsgrenze
Kaiser [12,13] Nachweisgrenze
Altshuler and Pasternack [14] The lower limit of detection/the minimum detectable true activity
Wing and Wahlgren [15] Detection sensitivity
John et al. [46] The limiting detectable sample concentration
Currie [7] The detection limit/limit of detection
Hubaux and Vos [16]
IUPAC [18]
IUPAC [24]
Voigtmann [17,19,26–29]
EPA [35]
ICH Q2(R1) [36]
Lavagnini and Magno [1]
(EC) No. 333/2007 [45]
Boqué and Heyden [2]
Rajaković et al. [3]
Linnet and Kondratovich [38]
Lavagnini et al. [40]
Loock and Wentzell [41]
IUPAC [24] Minimum detectable value
ISO 11843-1 [25]
US EPA [35] Instrument detection limit and method detection limit

Currie [7] Minimum working concentration Quantification limit
Currie [7] Determination limit
IUPAC [24] Minimum quantifiable value
IUPAC [24] Quantification limit/limit of quantification
Lavagnini and Magno [1]
(EC) No. 333/2007 [45]
Rajaković et al. [3]
Linnet and Kondratovich [38]
US EPA [35] Instrument quantitation limit and method quantitation limit
US EPA [35] Limit of quantitation/quantitation limit
ICH Q2(R1) [36]
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present. As can be seen from Table 1, the terms critical level,
detection limit/limit of detection and quantification limit/limit of
quantification are the most commonly used these days.

Furthermore, the authors would like to draw scientists’ atten-
tion to validation of the analytical procedures. The validation
process should be a confirmation that the procedure is fit for a
specifically intended use. LD and LQ are one of the most important
parameters of the analytical procedure and thus deserve special
attention. The present publication provides an opportunity to
learn something more about over one hundred years of the history
of detection and quantification capabilities. Moreover, some mod-
ern and universally accepted methods for estimating LC, LD and LQ
are demonstrated in the paper.

2. Important issues related to estimation of detection
and quantification capabilities

Before discussing approaches in computing detection capabilities,
the authors would like to highlight some information, crucial for a
proper understanding and effective application of the methods to
determine detection and quantification capabilities: (i) Neyman–
Pearson hypothesis testing theory, (ii) how to correctly present
results, (iii) statistical intervals and (iv) blank samples. A knowledge
of these topics is important to properly use LD and LQ estimation
methods and thus deserve special attention.

2.1. Neyman–Pearson hypothesis testing theory

Numerous statistical techniques rely on using methods of
hypothesis testing, confidence intervals and estimations with the
purpose of representation and interpretation of evidence in a
given set of observations. Briefly, the Neyman–Pearson theory [8]
focuses on using observations to choose from two hypotheses.
The concept of the Neyman–Pearson theory means that a statis-
tical test should be evaluated with regard to its error probabilities:
the probability of rejecting hypothesis A in the case when it is true
and the probability of accepting A when hypothesis B is true.
A procedure with good probabilistic properties will manifest a
satisfying performance on average, provided it is used repeatedly.

This theory explains how to find a test with the smallest Type II
error value (β) for any fixed Type I error value (α). There is still a
risk of making Type I errors but this risk is controlled by the fixed
value. Any test with a smaller than assumed Type II risk entails a
larger Type I risk. The Neyman–Pearson theory of hypothesis
testing focuses on reducing the probabilities of making errors,
thus providing a potent and strong paradigm that is widely
present within today's statistical theory. Fig. 1 represents

graphically the relationship between Type I and Type II errors, as
well as LC, LD and LQ.

2.2. How to correctly present results? About different types
of domain

The way a result is presented depends on the data type used to
estimate detection capabilities. They can be the theoretical values
almost never known in real life (population parameters) or can be
obtained experimentally, as the estimation of the true parameters
(sample test statistics). Based on the first data type, the result is
given in the theoretical domain. Whereas LC and LD are presented
in the experimental domain, they are calculated from measure-
ment data. It should be mentioned that the true LC and LD values
are computed by using the true parameters. By using experimental
data to calculate detection capabilities the results will only give an
estimation of the true values. In both the experimental and the
theoretical domain the detection capabilities can be presented in
the response or concentration domain. Table 2 graphically indi-
cates this issue (with appropriate notations). The authors use the
notation system presented in Table 2. However, in the present
paper, the authors also use the generic symbol LC and LD to
represent critical level and detection limit, respectively.

2.3. Statistical intervals

Statistical intervals are elements of statistic that represent
reliability of estimation of the population parameters or prediction
of future sample values, dependent on parameters like variance,
sample size or confidence level. The width of the intervals
is extended by factors like high confidence level, small sample
size and large variance. There are three types of intervals used in
statistical inference: (i) confidence intervals, (ii) prediction inter-
vals and (iii) tolerance intervals. Each type of the intervals
provides different statistical information. Fig. 2 is an schematic

Fig. 1. Graphical representation of Type I and Type II errors, α and β respectively, and relationship between LC, LD and LQ with truncation at zero. Relative frequency of results
at (i) blank concentration (_), (ii) detection limit concentration (…), (iii) quantification limit concentration (---). Negative values are truncated and clustered in the zero
concentration point, hence creating asymmetric distribution of values.

Table 2
Symbols used to present detection capabilities in the experimental and theoretical
domain.

Type of domain

Critical level Detection limit

Signal
domain

Concentration
domain

Signal
domain

Concentration
domain

Theoretical
domain

YC XC YD XD

Experimental
domain

yC xC yD xD

M. Belter et al. / Talanta 129 (2014) 606–616608



representation of mutual position of the discussed intervals
presented as the continuous bands.

Confidence interval is a range of values that is likely to include
the true population parameter, like mean or standard deviation,
with a given confidence level. It should not be interpreted as the
range that contains certain percentage of individual sample values.
In analytical chemistry, confidence interval is the statistical tool
that is most often used to describe in what range the mean of the
sample is contained.

Prediction interval provides information about a range of values that
will contain a single future response value with a given confidence
level. It is always wider than confidence interval because it considers
uncertainty of the prediction of single response and the uncertainty of
the mean value. While describing the 95% prediction intervals one
must remember that term “95%” refers to a confidence level, not to a
coverage of sample values. Misinterpretation of this fact may lead to
erroneous conclusions.

Tolerance interval is the widest of the presented intervals and it
covers a specified proportion of the population with a given
confidence level. The difference between the prediction intervals
and the tolerance interval is that the first refers only to single
future response value and the latter covers the certain part of the
population.

Statistical intervals are usually calculated and presented as
two-sided intervals. However, they can be expressed as one-
sided intervals, either lower or upper, representing only one
limiting value instead of two. Another aspect of intervals is the
division to simultaneous and non-simultaneous intervals. Non-
simultaneous interval is used when one only want to make the
prediction for a single x-value, whereas simultaneous interval is
chosen when prediction is supposed to cover the several positions
of x-values simultaneously. The discussion on the proper use of
above intervals along with suitable equations is presented in the
tutorial by de Gryze et al. [9].

2.4. Blank samples

The role of blank is crucial when estimating detection capabil-
ities. The value and standard deviation of the blank are inherently
connected with basically every LD estimation method. The preci-
sion of preparing and analyzing the blank solutions has the direct
impact on the estimation of LD value, especially when handling
with samples containing analyte in concentrations close to the LD
level. The ideal blank should have a similar matrix and concentra-
tion of interfering compounds comparable to samples but contain
none of the analyte and it is subjected to the sample preparation
procedures. The signal from appropriate blank should take into

account several variables crucial to proper estimation of detection
capabilities such as instrumental noise, fluctuations of measure-
ment conditions over long-term process of measuring, inhomo-
geneity, contamination from the reagents used in the sample
preparation process and sampling procedure. Depending on the
instrument or the analytical process the blank samples are used
for calibrating the instruments, establishing the baseline or wash-
ing out the samples from instrument's tubing and containers.
If the blank is intended to use in ways mentioned above, then it
should contain the solvent without interfering components and it
usually does not pass through the sample preparation procedures.

3. Historical background

The development of the definition and estimation of detection
capabilities was strongly linked to the development of instru-
mental analysis. In the early 20th century, instrumental analysis
became significant in the field of analytical chemistry. The first
mention of detection abilities in the literature probably dates from
this time [10,11]. Since then, there has been no doubt about the
importance of determining LD.

At the beginning of the 20th century, references to detection
capabilities regarded only qualitative determination of substances
present at low concentration in the sample (qualitative laboratory
tests). Quantitative analysis of low-concentration compounds was
still the future task. Some steps toward a detection of low quantities
of substances were made by Curtman and Rothberg [10]. The authors
described the determination of ‘the limit of the test’ – the smallest
quantity of analyte that would give ‘an unmistakable’ signal under
specified conditions. In 1923 in Mikrochemie, Feigl used the term
Erfassungsgrenze which can be translated into English as detec-
tion limit [11]. Although some terms were used, the methods for
estimating the detection capabilities were not specified. Kaiser made
a major step forward in LD calculation [12,13]. He proposed to esti-
mate LD by applying a mathematical statistic (for suitable equation
see Table 3). The proposed method allows the computation of
an experimental detection limit in the response and content domain.
However, there is no mention of hypothesis testing in Kaiser's
approach.

4. 1960s: a multitude of new ways to estimate detection limit
and Currie's attempt at standardization

It was only in the 1960s that analytical chemists became much
more involved with characterization of the analytical procedure.
‘The smallest amount or concentration that can be detected’
or other similar definitions were in use. However, the above
definition is ambiguous and may lead to subjective results due to
the potential ambiguity of using the expression ‘the smallest’.
Secondly, there is no clear answer when the analyst makes the
decision that the analyte is ‘detected’. These problems indicated a
need for constructing an unequivocal definition of detection limit.
Moreover, a variety of ways to describe detection and quantifica-
tion abilities emerged at the time. Most of them were based on
calculations of standard deviation of the blank sample. Altshuler
and Pasternack suggested the use of standard deviation of the
blank (s0) to calculate ‘the lower limit of detection’ [14]. Wing and
Wahlgren evaluated ‘the relative detection sensitivity’ as 10% of
the background [15].

In the 1960s many more methods emerged to calculate detection
capabilities than those mentioned above. Consequently, as early
as the late 1960s, Currie became aware that the number of terms
and ways to calculate detection capabilities could be problematical
(Tables 1 and 3, respectively). Moreover, as Currie noted, the LD

Fig. 2. Example of schematic representation of statistical intervals for 10 values
presented as the continuous bands and their relation to each other: (i) regression
line (_), (ii) confidence band (-∙-), (iii) prediction band (…), (iv) tolerance band (---).
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Table 3
Historical and universally accepted approaches for estimation of the detection and quantification capabilities discussed in the present paper.

Authors Description and comments Equations

1960s
Altshuler and
Pasternack [14]

Computation of the lower limit of detection based on standard deviation of the blank

Kaiser [13] Calculation based on the signal response and standard deviation of the blank. The result presented in
the content domain when yD converted to concentration using the calibration function

yD ¼ yBþ3s0

ȳB – the mean value of the instrument blank response
s0 – population standard deviation of the blank

Wing and
Wahlgren [15]

‘The relative detection sensitivity’ computed as 10% of the background

Currie [7] The method is applied to following assumptions: homoscedastic, Gaussian measurement noise and
ordinary least squares (OLS) regression

yC ¼ ks0
yD ¼ 2ks0
yQ ¼ 10s0

k – coverage factor
yQ– quantification limit

1970s and 1980s
Hubaux and Vos
[16]

Method based on the prediction interval of the calibration curve. According to Voigtman,
the method produces biased results and is not recommended [17] xC ¼ sr t1� α; I � 2

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Kþ1

Iþ x2

∑I
i ¼ 1 ðxi �xÞ2

r
a,b

xD ¼ xC þ sr t1� β; I � 2
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Kþ1

Iþ ðxD � xÞ2
∑I

i ¼ 1 ðxi � xÞ2

r
a,b

sr – sample standard error about regression, calculated with the equation listed belowb

t1�α, I-2 – Student's t corresponding to I�2 degrees of freedom and (1�α) confidence level
b – slope of the calibration curve
K – number of measurements performed on the unknown sample
I – number of standard solution
x – mean of I standards, calculated with the equation listed belowa

xi – concentration of calibration standard

IUPAC [18] The value of k should refer to the number of replicates (20 replicate measurements and k¼3 are
recommended by the IUPAC)

xD ¼ ks=b

s – standard deviation

Winefordner and
Long [20]

Two approaches based on parameters of calibration curve , namely analytical sensitivity and interception
and theirs standard deviations: (i) graphical approach and (ii) propagation of errors approach

(i) xD ¼ ks0
b7 tαsb

(ii)
xD ¼

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 þ s2a þ a

bð Þ2s2b
q

b

sb – standard deviation of the slope
sa – standard deviation of the intercept
a – intercept of the calibration curve

IUPAC and ISO steps to harmonization
IUPAC [24] Based on Neyman–Pearson theory of hypothesis testing, factors associated with preparation of calibration

curve (number of standards, the range of the calibration curve, number of replicates performed on
the blank, standards and the unknown sample) are considered. The correctness of the method was
proved by Voigtman [17]

xC ¼ t1� α;νs0η1=2

b
c

xD ¼ ðt1� α;ν þ t1� β;ν Þs0η1=2
b

c

xQ ¼ 10sQ
b

η – function of the OLS parameters, calculated with the equation listed belowc

v – degrees of freedom
sQ – standard deviation of the estimated value at the quantification limit
xQ – quantification limit content value

ISO [25,34] Method based on the noncentrality parameter of the noncentral t distribution. For the assumptions:
linear calibration function and homoscedastic, Gaussian measurement noise, xC and xD are estimated
using the expressions listed alongside. Voigtman strongly advises against using this approach
because of the bias

xC ¼ t1� α;IJ � 2sy=x
b

1
Kþ 1

IJþ x2

∑I
i ¼ 1 ðxi � xÞ2

� �1=2

xD ¼ δðIJ�2;α;βÞsy=x
b

1
Kþ 1

IJþ x2

∑I
i ¼ 1 ðxi �xÞ2

� �1=2

J – number of parallel preparations for standard solutions
δ – noncentrality parameter of non-central t distribution
t1�α, IJ�2 – (1�α)% quantile of Student's t distribution with IJ�2 degrees of freedom

Other approaches for computing detection and quantification capabilities from 1990s to present
US EPA [35] The computation of MDL is based on the one-tailed t-statistic at the 99% confidence level and s,

in concentration units, for (7 or more) samples spiked at the estimated IQL
IDL¼ 3sr

b

IQL¼ 10sr
b

MDL¼ t1�α;K�1s
MQL¼ 3MDL

Linnet and
Kondratovich [38]

Approach is nonparametric i.e. no assumptions are made regarding measurements distribution.
Data from blank samples are ranked by increasing values and 95th percentile is taken

LC ¼ Perc1�α ¼ n 95
100þ0:5
� �

LD ¼ LC þcβ � sd

Perc1-α – 1�αth percentile of ranked blank net values
n – number of blank samples

Lavagnini [40] Nonparametric method involving Type I and II errors similar to Hubaux–Vos, based on the one-sided
simultaneous tolerance interval. It uses Theil–Sen (TS) median-based regression technique combined
with Lancaster–Quade (LQ) statistics

Loock and
Wentzel [41]

Method applicable with sensors calculated with mean and standard deviation. Parametric and
homoscedastic sample measurements values are assumed

yD ¼ yBþtα;n�1sr
b

xD ¼ tα;n� 1sr
b

b

a x¼ 1
I∑

I
i ¼ 1xi .

b sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑I

i ¼ 1 ½yi �ðaþbxi Þ�2
I�2

q
where yi denotes the sample mean of replicates for standard.

c η¼ 1
Kþ1

I þ x2

∑I
i ¼ 1 ðxi �xÞ2

� �1=2

.

d cβ ¼ z1�β= 1� 1
4�v

� �
where z1�β denotes the standard normal deviate derived from the 95th percentile of the standard Gaussian distribution.
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values obtained by using different equations developed during the
1960s, applied to the same chemical measurement system, encom-
pass nearly three orders of magnitude [7]. Because some methods
quoted by Currie had no statistical background or the statistical
explanation was incorrect, he proposed a new concept for estimating
detection and quantification capabilities. Currie's reflections were
based on the Neyman–Pearson hypothesis testing theory. Currie's
concept was based on the following assumptions: the response
variable has Gaussian distribution and is approximately linearly
related to the explanatory variables (linear regression also known
as ordinary least squares, OLS). Furthermore, the variance of the
response variable is the same for all explanatory variables (homo-
scedasticity). The critical level was defined as the response of the
instrument above which an observed signal may be reliably recog-
nized as ‘detected’. LC depends only on Type I errors (false negatives
are ignored). According to the desired confidence level, the value of
the coverage factor (k) can be different. Therefore, when the prob-
ability of a false positive error is 0.05, k¼1.64 (one-tailed t-test,
infinite degrees of freedom). Currie's definition of LD from 1968 is as
follows: ‘the “true” net signal level which may be a priori expected to
lead to detection’. Unlike LC, LD depends on both false positive and
false negatives [7]. For the assumption α¼β, LD can be estimated
according to the formula: LD¼2LC. Whereas LQ was defined as ‘the
level at which the measurement precision will be satisfactory for
quantitative determination’. The corresponding equations for LC, LD
and LQ (with Currie's assumptions) are listed in Table 3. Currie's
paper, published in 1968 had a significant impact on the conceptual
development of detection and quantification capabilities. Unfortu-
nately, it would be three decades after its publication before any
steps were taken towards harmonization.

5. Approaches during the 1970s and 1980s

5.1. The Hubaux and Vos approach

In the article published in 1970, Hubaux and Vos presented a
method based on the prediction interval of the calibration curve to
estimate detection capabilities [16]. The aim was to compute LC
and LD in the experimental domain by using information from a
calibration curve. The values of these parameters (in the concen-
tration domain) are estimated using the equations listed in Table 3.
As the authors correctly noticed, the values of xC and xD depend on
the precision and the preparation way of the calibration line
(calibration range, number of standard solutions and number of
replicates for calibration standards and for the unknown sample).
However, because of some incorrect assumptions, the Hubaux and
Vos method produces biased results and is not recommended: the
use of prediction intervals to compute detection capabilities was a
mistake. This was proved and explained by Voigtman by perform-
ing Monte Carlo simulations, which comprised tens of millions of
independent calibration curve data sets [17]. The result was that
experimental detection limits by Hubaux and Vos approach were
significantly negative biased and produced too high false negative
rates which was due to a long-standing error generated by using
the prediction intervals.

5.2. The IUPAC method from 1978

In 1978 the IUPAC members defined the detection limit as ‘the
concentration or the quantity derived from the smallest measure that
can be detected with reasonable certainty for a given analytical
procedure’ and suggested the equation listed in Table 3 to estimate LD
[18]. According to IUPAC s denotes the standard deviation of
measurements for a blank sample (s0). As can be seen by comparing
the equations in Table 3, the IUPAC approach from 1978 is similar to

Kaiser's method (actually, when k¼3 the formulas are the same).
In neither of the methods is there any mention of hypothesis testing
theory. In the IUPAC model the computations are based on k, whose
numerical value is not unambiguously specified. However, the k value
should refer to the number of measurements. Therefore, by using the
value recommended by IUPAC (k¼3), there is a necessity to accom-
plish a sufficiently large number of measurements (minimum 20
replicates) [18]. The standard deviation mentioned above can be
estimated as [19]: (i) s0, (ii) sr (see equation below Table 3) and
(iii) sample standard error of the intercept of the calibration curve (sa)
given by the equation:

sa ¼
sr
I1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∑I

i ¼ 1xi
2

I∑I
i ¼ 1ðxi�xÞ2

s
ð1Þ

Different possible ways to compute standard deviation leads to
various xD results. Therefore, it is always crucial to give not only the
obtained LD value but also the manner of the standard deviation
designation when the discussed method is applied. This issue was
later indicated and examined byWinefordner and Long in their paper
of 1983 [20]. Kaiser's and the IUPAC approaches discussed above
can be considered as the foundations of the traditional method of
determination of detection capabilities. In fact, the commonly used
blank determination method (LD calculated as three times the
standard deviation of the blank) [21–23] is a very simplistic way of
applying the traditional model. However, the method is not suffi-
ciently precise. When LD is estimated as a standard deviation of the
blank multiplied by 3, the factors associated with preparation of the
calibration curve are not fully considered. The slope and intercept
are subject to error. In case of using a blank determination method,
random errors in the slope and intercept of the calibration line are
omitted. However, the errors mentioned above are taken into
consideration when the standard deviation is calculated as sa or sr
instead of s0.

In conclusion, the computations in the IUPAC method are based
on empirical data and are easy to apply. However, as mentioned
above, different modifications of the discussed concept arise from
the several ways of calculating the standard deviation. As noted by
Montville and Voigtman in 2003, this can result in an intentional
selection of that modification which gives the lowest LD value [19].

5.3. Winefordner and Long – verification of the IUPAC method

The purpose of this report is to evaluate the statistical sig-
nificance of LD value in accordance with the IUPAC definition. It is
presented in a simple and general formwith the intention that it is
also directed towards researchers without extensive statistical
knowledge [20]. Three methods of estimating LD are compared
in terms of their competence considering analytical sensitivity and
its influence on LD. For better visualization of the differences
between those methods they are confronted with each other
while dealing with data sets whose slope, intercept and standard
deviations differ significantly.

The following issues relate to the IUPAC approach and have
been commented upon by authors to a wide extent. Emphasis is
put on using factor k¼3, instead of k¼2. It is necessary for the LD
value to be significantly different from the blank values. It is also
recommended to include the k factor into the xD value, not only
into the yD value since xD is more frequently reported than yD, e.g.,
xD(k¼3). Besides the IUPAC model, two others are presented: (i) the
graphical approach, which includes standard deviation of the
slope in the LD expression; and (ii) the propagation of errors’
approach which concerns the standard deviation of the concen-
tration. All three models are applied to four different experimental
data sets and conclusions are drawn. Fig. 3 explains how LD is
obtained with the graphical approach. This method introduces
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confidence interval of the slope marked with dashed lines. The LD
is then calculated by the equation presented in Table 3. In the case
when the parameter related to the error of the slope, tαsb, is close
to 0 or when b⪢tαsb, the value of xD is obtained. However, when
tαsm value grows, it increases the xD value so it becomes xD,high, as
shown in Fig. 3. Having all dependencies in consideration, the
larger value of xD,high is recommended while using the graphical
approach. The propagation of errors method is more complicated
than the other two methods and involves interception and its
standard deviation besides the standard deviation of the slope and
of the blank, see Table 3 for the proper equation. All parameters
altogether contribute to discernibly larger xD in comparison with
other two methods. However, it is not a drawback since all
parameters which have significant contribution to reliability of
blank and standards signals measures are taken into consideration.

To conclude the results, the graphical approach provided the
most erroneous values of LD and should be used only for approx-
imating LD values. The IUPAC approach is advisable when the error
of the blank significantly exceeds the error of the slope otherwise
the LD value will be artificially low. The propagation of errors is
considered to be the most suitable due to its incorporation of
analyte measurement errors into the LD value. With regard to the
above statements, both the IUPAC and the propagation of errors
approaches are recommended by Winefordner and Long in the
paper of 1983.

6. Modern approaches to the calculation of detection
and quantification capabilities

As presented above, in the literature published up to the 1990s
there were numerous inconsistent definitions and methods for
determining LD. ISO and IUPAC members saw a need to harmonize
the definitions related to detection and quantification capabilities.
Therefore, in the mid-1990s two important documents prepared
by ISO and IUPAC members were issued [24,25]. Even though ISO
and IUPAC specialists collaborated while preparing these docu-
ments, differences in approaches in defining and calculating
detection and quantification abilities still appeared. Their pro-
posed concepts are described below.

6.1. IUPAC concept

In an IUPAC document from 1995 (prepared by Currie) [24],
some steps to harmonize an international terminology in the

area of detection and quantification capabilities were taken.
The suggestions for nomenclature are listed in Table 1. Currie
recommends using the terms: ‘critical value’ or ‘critical level’,
‘detection limit’ or ‘minimum detectable value’ and ‘quantification
limit’ or ‘minimum quantifiable value’. The assumptions for
computing detection and quantification capabilities are the same
as for Currie's concept from 1968, the IUPAC method from 1978,
the graphical approach or the propagation of errors approach
discussed previously: homoscedastic, Gaussian measurement
noise and OLS regression. The IUPAC concept from 1978 was
developed to consider the theory of hypothesis testing, therefore
the t-Student distribution was taken into consideration. The
constant value of k was replaced with the Student t-value. The
probability of false positives α and false negatives β, recommended
by Currie, is equal to 0.05. This means there is a 5% chance that the
researcher incorrectly decides that the analyte is present in the
sample when it is not (during the detection limit estimation).
The equations for xC, xD and xQ are presented in Table 3. The
method proposed by Currie is recommended for estimating
detection and quantification capabilities. The correctness of the
presented approach was tested and described by Voigtman not
only for homoscedastic, Gaussian measurement noise and OLS
processing of calibration curve data, but also for heteroscedastic,
Gaussian measurement noise and weighted least squares (WLS)
regression [17,26–29]. Currie's concept is useful for estimating
detection capabilities in the theoretical domain as well as the
experimental domain. The advantage is that the method is
universal and can be adopted in industry and various fields of
science (for example chemistry, medicine and toxicology). In
subsequent papers, Currie draws the researcher's attention to the
importance of a unification of methods to compute detection
capabilities [5,30–32]. The articles are mainly related to the
harmonization of LC and LD estimation, executed by IUPAC and
ISO members in the mid-1990s. Currie briefly describes the history
of detection capabilities, characterizes IUPAC and ISO appro-
aches and the differences between them and communicates future
challenges. The author pays attention to the role of the blank and
its variance as the most crucial quantities when calculating
detection and quantification capabilities [5,30,32,33]. Further-
more, Currie recommends reporting an estimated value with its
uncertainty, even when the obtained result is below the LC
[24,30,32,33]. This prevents information loss. ‘When a result is
indistinguishable from the blank, based on a comparison of the
result with the LC, then it is important also to indicate that fact,
perhaps with an asterisk or “ND” for not detected. But “ND” should
never be used alone. Otherwise there will be information loss, and
possibly bias if “ND” is interpreted as “zero”‘[33].

In 1999 Currie published a historical overview of detection and
quantification limits [5]. The author considers Kaiser's [12] and
Currie's [7] articles as one of the early papers related to the
detection limit. In the paper the problems arising from transfor-
mation of the signal detection and quantification limits to the
concentration domain as well as the ill-defined blank were
described. However, Currie mainly focuses on presenting the
IUPAC recommendations from 1995 and some hints in the subject
matter. In the present paper the authors describe the history of
detection capabilities more broadly . Considerations of changes in
nomenclature and computations are presented in Tables 1 and 3,
including origins (from the 1900s) and trends of the last decade.

6.2. International Standard ISO 11843

In the ISO document that outlines the terms and definitions for
describing detection capabilities [25], the expressions the critical
value and the minimum detectable value are used. There are the
same basic assumptions as used by the IUPAC and Currie method:

Fig. 3. Graphical representation of LD estimation using the graphical approach
presented by Winefordner and Long. The analytical calibration line (_) and
confidence interval of the slope (---). The xD value in the concentration domain
is obtained by the straight line projected from yD intercepting with the calibration
line.
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(i) the linear calibration function, (ii) Gaussian measurement
noise, and (iii) constant variance (homoscedasticity). The ISO
approach allows the LC and LD to be calculated in the experimental
domain (in both the response and the concentration domain).
The appropriate equations (for the concentration domain) are
listed in Table 3. According to the ISO recommendations, at least
a 5-point calibration curve should be prepared (I¼5). When α¼β
and the appropriate large number of replicates is made, δ can be
approximated as 2t1�α,IJ�2, then xD¼2xC [34].

The ISO recommendations for calibration curve preparation are
memorable and should always be adopted. However, Voigtman
suggests that the methods proposed by the ISO [34] are biased.
Voigtman verified the utility of the method based on critical values
of the noncentrality parameter of the noncentral t distribution to
estimate detection capabilities. As with the Hubaux and Vos
approach, he carried out Monte Carlo simulation study using tens
of millions of independent calibration curve data sets. The results
showed that the method provides substantial bias in rates of false
negatives [26]. For this reason, Voigtman strongly advises against
using this approach: ‘avoid use of “critical values of noncentrality
parameter of the noncentral t distribution” methodology, since it is
never applicable’ [28]. A derivation of the xD formula is misleading
and results in a negatively biased xD value (the xD value is under-
estimated). Voigtman suggests using Currie's method to estimate
detection and quantification capabilities because it gives unbiased
results for all degrees of freedom. Concluding, Voigtman proved the
ISO method to be mathematically incorrect. To the date, researchers
did not deny Voigtman's statement regarding this method, which is
still officially in use. The topic is still open to be discussed.

7. Other approaches for computing detection and
quantification capabilities from the 1990s to present

7.1. The United States Environmental Protection Agency, US EPA
approach

In 2000, the US EPA members proposed to distinguish the
detection and quantification capabilities that refer to the measur-
ing device and the analytical method [35]. In this concept, LD
and LQ can be expressed as four different terms: (1) instrument
detection limit (IDL), (2) method detection limit (MDL), (3) instru-
ment quantitation limit (IQL) and (4) method quantitation limit
(MQL). IDL and IQL refer to the limitations of the apparatus and can
be estimated from measurements of blank samples or standard
solutions. IDL and IQL values depend on the sensitivity and back-
ground noise of the instrument. The terms MDL and MQL refer to
the minimum concentration of the analyte that can be reliably
detected (MDL) or reliably quantified (MQL) by using the specific
analytical method and can be estimated from measurements of
real samples or spiked samples. In this instance, not only the

instrumental noise and sensitivity, but also matrix effects and
interferences are included.

In the root mean square error, the RMSE Method proposed by
the US EPA [35] the equation to calculate IDL is a modification of
the IUPAC formula from 1978 (RMSE is equal to sr, see equation
listed below Table 3). IQL is calculated as to 10-fold sr divided by b.
As mentioned above, the calculations of MDL and MQL are based
on the measurements of matrix samples spiked with analyte
concentration at the estimated IQL and the Student t-value is
taken into consideration (one-tailed t-test for α¼0.01 and K�1
degrees of freedom). The equations proposed by the US EPA
members are given in Table 3.

The EPA's intention was a specification of LD calculations of
pesticide residues in food. This was achieved by one of the EPA's
programs called the Office of Pesticide Program (OPP). The primary
objective of that study was an evaluation of health hazards to the
population resulting from the presence of pesticide residues in
food. The driving force behind the development of this program at
the time was the requirements outlined in the Food Quality
Protection Act (FQPA) in 1996. Certain ways of processing were
assumed regarding measurements denoted as “Nondetects” which
does not necessarily mean that the analyte is not present in the
sample, it might occur below the LD. The US EPA approach assumes
a normal distribution of measurements.

7.2. Methods based on signal-to-noise ratio

Different concepts and calculation approaches to detection
capabilities are based on the S/N ratio. They are mainly used in
chromatography. The approach commonly used today was pro-
posed by The International Conference on the Harmonisation of
Technical Requirements for Registration of Pharmaceuticals for
Human Use (ICH) and The European Pharmacopoeia. According
to the ICH document [36], the LD and the LQ are designated by
chromatograms from spiked samples at a low concentration level
of the analyte and blank samples. The signal-to-noise ratio
between 3:1 or 2:1 is generally considered a good estimate of LD.
The S/N¼10:1 refers to the smallest concentration of the analyte
which can be reliably quantified (LQ). Based on the S/N ratio
approach from 7th edition of the European Pharmacopoeia [37],
LD can be estimated using the following equation:

LD ¼ 6H
h

ð2Þ

The parameters H and h are presented in Fig. 4. H is obtained for
the chromatogram of a blank sample with a small amount of
analyte. The background noise is usually designated for a blank
sample and observed around the retention time of the analyte. h is
the maximum amplitude of the background noise. In addition,
when the method based on the S/N ratio is applied, the appro-
priate chromatograms should be attached.

Fig. 4. Graphical representation of h and H parameters.
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The signal-to-noise ratio is widely used in chromatographic
methods because it is an easy tool to estimate detection capabil-
ities. However, due to manual integration, application of S/N ratio
approach results in subjective evaluation of LD. Moreover, out-
comes obtained with the discussed method depend mainly on the
instrumental noise. Another example of successful application of
the LD estimation method for chromatographic data is the IUPAC
concept (Fig. 4.)

7.3. Nonparametric methods

When distribution of variables in the population is not avail-
able or when the results of an analysis are scattered in a non-
Gaussian manner, nonparametric statistical methods should be
used to obtain a more reliable estimation of the detection limit.
Nonparametric methods do not rely on predictable population
parameters i.e. mean or standard deviation, which describe dis-
tribution of variables of interest. Nonparametric approaches
belong to the so-called “robust methods” and are applied in
cases when variables manifest non-Gaussian distribution, outliers
are present or when certain assumptions according to variables
distribution are not achieved. Nonparametric statistics are gener-
ally easier to handle than parametric methods, have fewer
assumptions and can be implemented even when the use of the
latter is justified, but one must keep in mind that they are usually
less powerful than parametric statistics. Some analytical instru-
ments tend to truncate negative response signals and present
them as zero or small positive numbers thus generating asym-
metric distribution of values which is a premise to apply the
nonparametric approach for LD determination. Fig. 1 is an example
of asymmetric data distribution produced by instrument-based
data truncation at a zero concentration value. All readings below
zero were automatically assigned to zero or small positive value.
Another important issue presented in Fig. 1 is graphical indication
of α and β, representing Type I and Type II errors respectively,
which should be taken into consideration while determining LD.

The most popular nonparametric statistical method of obtain-
ing LD is ranking of ordered values. Linnet and Kondratovich in
their paper of 2004 [38] propose a method that consists of using LC
calculated with the 95th percentile from repeated blank measure-
ments and standard deviation of repeated sample measurements
with relevant concentrations in order to obtain LD. Later in the
same year, The National Committee for Clinical Laboratory Stan-
dards (NCCLS) in collaboration with Linnet and Kondratovich
published official guideline, EP17-A, providing protocols for deter-
mining the lower limit of detection of clinical laboratory methods
[39]. The EP17 guideline method used therein is basically the same
and is recommended for use in clinical laboratories and by
manufacturers of in vitro diagnostic tests. Firstly, LC is determined
by estimation of the 95th percentile of ranked values for α¼5% as
a default level of error, next LD is calculated using the equa-
tions listed in Table 3. The authors also elaborate an example of
verifying a claimed LD of a given analytical procedure and evaluate
the performance of LD estimation procedures by a simulation
consisting of 10 000 runs. Corresponding to the simulation result,
the conclusion is that smaller sample size contributes to larger
standard error (SE): for sample size n¼25, SE of LD is 52% and for
n¼100, SE¼27%. The presented LD estimation procedure is in
accordance with the idea for establishing LD as described by the
ISO guidelines, mainly considering both Type I and II errors.
The method becomes general by focusing on concentrations and
is not dependent on a specified type of calibration function. It is
also applicable with asymmetric blank distribution. The drawback
of the described procedure is that it gives a less precise estimation
of the LC compared to fully parametric procedures.

Lavagnini et al. have recently proposed the use of the nonpara-
metric Theil–Sen (TS) median-based regression technique com-
bined with Lancaster–Quade (LQ) statistics [40]. This is applied
to receive (i) detection limit of an instrumental method; (ii)
quantification of the uncertainty of a discriminated variable in
the inverse regression; (iii) comparison of methods. The method
therein described is based on a one-sided simultaneous tolerance
interval to obtain the LD. The procedure involves Type I and Type II
errors and is similar to the Hubaux and Vos approach [16]. Firstly,
the (1�α)100% one-sided simultaneous tolerance interval is
calculated by the following equation:

y7
tol;1�αðxÞ ¼ y7

C;1�αðxÞ7NðPÞ v
αχ2v

s2
� �1=2

ð3Þ

where y7
tol;1�αðxÞ denotes the limits of the (1�α)100% tolerance

interval, y7
C;1�αðxÞ the limits of the (1�α)100% confidence band, N

(P) the one-sided P percentile point of the unit normal distribution
and αχ2v the lower α percentile point of the χ2 distribution. The next
step is finding the upper limit yþ

tol;1�αð0Þ, that is limiting value
at zero concentration which is correspondent to the LC according
to Currie. The limiting value is explained as the upper value in
the signal domain defined by confidence interval at (1�α)100%
confidence level that is associated with concentration at zero level.
The LD is then given by the projection on the x-axis of the
intersection of a straight line y¼ yþ

tol;1�αð0Þ with the lower (1�β)
100% one-sided tolerance band of the calibration curve. This
operation is presented in Fig. 5.

In the view of the authors, the nonparametric Theil–Sen
regression approach is easy to use and compute and is devoid of
restrictive statistical constraints and is therefore a robust method.
The values of LD obtained with the TS–LQ approach are larger than
those obtained with WLS regression. This is explained by con-
sidering the presence of two opposite effects: robustness of the
nonparametric TS method and the influence of decreasing var-
iance of the WLS tolerance interval at low concentration. Never-
theless the authors point out that these drawbacks do not affect
the advantage achieved by the use of the TS–LQ technique in
different analytical problems.

Fig. 5. Graphical representation of LD estimation using nonparametric Theil–Sen
approach presented by Lavagnini et al. TS calibration line (_) and lower (1�β)100%
one-sided tolerance band (---). The interception of straight dotted line, projected
from y0

þ , with the lower tolerance band indicates the position of LD in the
concentration domain. The point y0þ represents the upper limit of the (1�α)100%
one-sided simultaneous tolerance interval at zero concentration level.
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7.4. Detection limits of chemical sensors

In the publication [41] the authors propose two methods for
calculating the limits of detection that are applicable with sensors
such as fiber optic sensors, photoacoustic sensors, absorption
sensors and refractive index sensors. The explained methods of
LD calculation are (i) method 1: based on the standard deviation at
low concentrations and (ii) method 2: determination by using
a calibration curve. Examples in the form of spreadsheets are
available online.

The first method accords with the guidelines of the American
Chemical Society [42] and consists of (i) repeatedly measured and
averaged blank value; (ii) measurements of samples containing
1–5 times higher analyte concentrations than the expected LD and
calculation of mean and standard deviation; (iii) calculation of
signal at the LD with an equation involving an average signal of
blanks, α-quantile of Student's t-function and standard deviation;
and (iv) computation of the concentration of LD based on the
sensitivity, i.e. slope of the calibration curve (see Table 3).

The above method represents a parametric approach which
assumes that the errors are normally distributed. The second
method is proposed for cases when researchers want to compare
their own sensor system with a previously published system
which has not been yet characterized with method 1. To obtain
the LD according to the second method, one must go through a
series of equations involving variables such as the slope of linear
fit, intercept of calibration curve, average standard deviation and
uncertainty of the concentration measurements. This method also
assumes a normal distribution of errors and, moreover, constancy
of standard deviations of the signal for all concentration measure-
ments. The authors also outline in the form of a graph the
influence of the sensor resolution limit on determination of the
LD. To demonstrate practical applications and limitations, as well
as differences between the discussed methods, both are applied to
experimental data derived from other publications and summar-
ized by the authors. In conclusion, the second method is described
as requiring many assumptions and producing only an estimation
of the LD. Therefore, the first method, involving repeated measure-
ments near the suspected LD, is the most recommended.

7.5. Multivariate detection limits approaches

The value of LD in the most cases refers to the univariate
measurement signal, by which it is assumed that signal is highly
selective for the specific analyte, and that possible influence of the
interferences is negligible. However, while considering more
complex data from spectral analysis or hyphenated techniques
the estimation of detection limit may dependent on more than one
variable. This situation is often encountered in the field of
chemometrics and environmental analysis or industrial processes
where multivariate calibration methods and related figures of
merit serve a great benefit in data processing and statistical
inference. Multivariate analysis handles unselective data to build
a valid model, capable to make predictions of certain variables
concerning the analyte of interest. Multivariate methods operate
the multiple data simultaneously to predict the concentration of
analyte and thus are able to compensate contribution of interfer-
ences and provide the quantitative information from unselective
data with good results. The multitude of multivariate LD calcula-
tion approaches is due to complexity and diversity of multivariate
regression models and analytical data. Several reviews regarding
the issue of multivariate approaches are presented below.

The topic of detection capabilities for multivariate calibration
methods is presented in the IUPAC Technical Report by Olivieri
et al. [43] where three different approaches are described using
real experimental data. As the authors explain, LD is strictly

connected with uncertainty estimation on the concentration levels
that can be statistically distinguish from zero concentration with a
given probability of false detection. One of the methods therein
presented is an error propagation-based formula for standard
error of prediction to zero concentration level. This formula
employs all sources of errors in the signal and concentrations data
of calibration and prediction samples. This method is described as
a sample specific, meaning that the level of interferences in the
sample influences the LD. This approach was also compared with
Monte Carlo simulations and with empirical model consisting of
repeated analysis of spiked samples resulting with mutual accor-
dance. Another approach involve transformation of multivariate
models to univariate forms. The condition that must be fulfilled
here is that the multivariate model must be able to efficiently
isolate signal of the selected analyte. The third method uses the
neural network to optimize the probabilities of α and β simul-
taneously for a fixed threshold concentration. The procedure
requires a set of samples with concentrations above and below
the selected threshold level.

Several different approaches have been reviewed by Boque and
Rius in 1996 [44]. The authors provide information on limitations,
applications and calibration assumptions for each method along
with suitable equations. The methods therein presented are (i) net
analytical signal approach, including extension to inverse calibra-
tion models, (ii) confidence intervals for concentration approach,
(iii) detection limits for coeluting species and previously men-
tioned, (iv) error propagation approach, and (v) transformation to
univariate form. Another review worth mentioning was presented
by van der Voet [6]. Author briefly describes several methods of LD
estimation, for example: (i) consideration of only one signal while
ignoring the others, (ii) application of a univariate approach to
each signal separately and (iii) development of decision criteria in
the multivariate space.

8. Conclusions

Over the course of a hundred years of detection and quantifica-
tion capabilities in analytical chemistry, researchers have proposed
a variety of methods for computing LC, LD and LQ (see Table 3).
Owing to the application of metrology in chemical sciences,
methods with no statistic foundations have been rejected auto-
matically. For example, there are no sound reasons for estimating
the LD by using methods mentioned by Currie: detection limit
compute as 10% of the background or twice the background [7].
Moreover, it was proved that some of the approaches (Hubaux and
Vos and ISO) generate results with bias [17,26]. However, the
methodology based on the noncentrality parameter of the non-
central t distribution [34] is still widely used and accepted.

The researchers must be aware of the fact that there is no one
universal equation suitable in all situations. The choice of the
calculation approach should be well thought out and reasonable
and it should mainly depend on the statistics of the measure-
ments: distribution of repeated measurements, the nature of
measurement noise (homoscedastic or heteroscedastic) and pro-
cessing method (ordinary least square or weighted least square).
Depending on the very nature of the analytical data there is a great
choice of various approaches of LD estimation. There might be
beneficial to incorporate less traditional and popular approaches.
If the data fails to fit any model of prediction, one should consider
nonparametric methods which are more robust than parametric
methods. The multivariate method might be used when more than
one component of the sample contributes to the analytical signal.
The knowledge of statistical behavior of data is vital to minimize the
possibility of misestimation of LD. Regardless of the LD and LQ
estimation method certain information should always be reported:
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(i) the method used to estimate detection and quantification
capabilities and (ii) the number of replicates (for statistical reasons,
it is crucial to have a sufficiently large number of measurements). To
conclude, before we compute detection capabilities, we should
characterize the measurement system and choose the most useful
concept to calculate LD in our specific case.

The terms and approaches for the determination of detection
and quantification capabilities remain one of the most controver-
sial issues in analytical chemistry. Despite the fact that many
articles about detection capabilities have been published so far,
there is still no total agreement between researchers in this field.
The present paper was written because the authors still recognize
a need to publicize the issue of standardization of terms and
computations of detection and quantification capabilities. Further-
more, the principal terms and equations relating to LC, LD and LQ
published from the beginning of 20th century up until the present
are presented.
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